expansions of N -methylphenanthroazoliums

R ichard N. B utler, * J ohn M. M cM ahon, Peter D. M cD onald (in part), C armel S. P yne (in part), Simon Schambony (in part), Patrick M cA rdle and D esmond C unningham

Chemistry Department, U niversity C ollege, Galway, Ireland

Abstract

N ew routes to substituted phenanthro[9,10-e]-1,2,4-triazines and phenanthro[9,10-c]-1,2,5-oxadiazines are described. C ycloadditions of these with C-phenyI-N -p-nitrophenylnitrile imide [IU PAC name: 2-benzyl-idene-1-(p-nitrophenyl)hydrazin-2-ium-1-ide] gave new substituted spiro-tricyclic phenanthro-1,2,4-triazolo[4,3-d][1,2,4]triazines and phenanthro-1,2,4-triazolo[3,4-d][1,2,5]oxadiazines. An X-ray crystal structure is reported on 7,10-diphenyl-5-(4'-nitrophenyl)-9,10-dihydro-5H -phenanthro[9,10-e][1,2,4]-triazolo[4,3-d][1,2,4]triazine 5a.

The fusion of azole rings at the 9,10-bond of phenanthrene has aroused recent interest ${ }^{1-4}$ and in particular phenanthro[9,10-d]-1,2,3-triazole derivatives ${ }^{3,4}$ have been used to develop synthetic scope in the phenanthrene series. Recently we have described ${ }^{5}$ an easy synthesis of the phenanthrotriazole series 1A. Herein we use these substrates $\mathbf{1 A}$ and the oxygen analogue the phenanthro-1,2,5-oxadiazole system 1B to provide a new route to the phenanthro-triazine and -oxadiazine systems 4A and $\mathbf{4 B}$ via a ring expansion of N -methyl quaternised salts $\mathbf{2}$. The products $4 \mathbf{A}$ and $\mathbf{4 B}$ are used in turn to generate the new tricyclic fused phenanthro-1,2,4-triazoloazine systems 5 and 6 .

Results and discussion

The compounds $\mathbf{1 A}(\mathbf{a}-\mathbf{e})$ and $\mathbf{1 B}$ were readily quaternised to N methylazolium salts on being heated in dimethyl sulfate. A nion exchange with sodium perchlorate gave high yields of the phenanthroazolium perchlorate salts 2A and 2B (Table 1). Treatment of suspensions of the salts 2 in toluene, dichloromethane or dimethylformamide with ethanolic NaOEt gave an apparently instantaneous ring-expansion to the bright red phenanthro [9,10-e]-1,2,4-triazines 4A and yellow phenanthro[9,10-c]-1,2,5oxadiazine 4B. This ring expansion reaction is likely to involve a deprotonation of the quaternary methyl group giving the fused hetero-1,3,5-triene intermediate $\mathbf{3}$ which undergoes a 1,6electrocyclisation to the products 4 (Table 1). The presence of the more electronegative oxygen atom in $\mathbf{2 B}$ rendered the reaction less efficacious (43% ring expansion) and demethylation to 1B competed strongly (31%) in this case with the ethoxide base removing the methyl group from the ring nitrogen as well as attacking the methyl C-H. H owever, the use of a more sterically restricted base, potassium tert-butoxide, oriented the reaction back towards ring expansion and reduced the extent of demethylation (Table 1, entry 12).

The compounds 4 contain two potentially reactive $C=N$ bonds conjugated to the phenanthrene system. It was of interest to examine which, if any of these would be the reactive site in a cycloaddition. When solutions of compounds 4 in dry benzene were treated with 1.2 mol equiv. of the nitrile imide 1,3-dipole, benzonitrile-N-p-nitrophenylimide [IU PAC name: 2-benzylidyne-1-(p-nitrophenyl)hydrazin-2-ium-1-ide], cycloadditions occurred on the $\mathrm{N}-4-\mathrm{C}-4$ a bond in a regioselective manner and gave high yields of the new spiro fused systems 5
and 6. The alternative orientation of the cycloaddition which would involve new $\mathrm{C}-\mathrm{C}$ and $\mathrm{N}-\mathrm{N}$ bond formation was not observed. This could have arisen since the N -atom is not necessarily the nucleophilic terminus of the nitrile imide 1,3-dipole particularly in the bent form which is necessary for the cycloaddition transition state ${ }^{6,7}$
The structures of the products were established from microanalyses (Table 1), IR , proton and carbon-13 NMR spectra which showed all of the expected signals (Scheme 1 and Experimental section). In the series 5 the coupling constant between the diastereotopic hydrogens at C-9 was $11.7-12.4 \mathrm{~Hz}$ indicating no strain at C-9 in these systems. An X-ray crystal structure of compound 5A (Fig. 1) confirmed the structure and showed a small out-of-plane tilt (8.4°) between the benzene rings of the phenanthrene unit. \dagger The two H atoms at $\mathrm{C}-9$ showed significantly different shielding with one appearing at δ $4.06-4.15$ and the other at $\delta 5.19-5.32$. The more shielded of the two is probably endo to the face of the phenanthrene moiety and experiencing shielding from it. ${ }^{1}$ Similar effects are observed for the methylene hydrogens of compound 6 .

Experimental

Mps were measured on an Electrothermal apparatus. IR spectra were measured with a Perkin-Elmer 983G spectrophotometer. NMR spectra were measured on a JEOL JNM-GX-270 instrument with tetramethylsilane as internal reference and deuteriochloroform or hexadeuteriodimethyl sulfoxide as solvent; J values are given in Hz. N M R assignments were supported by decoupled and off-resonance decoupled spectra. M icroanalyses were measured on a Perkin-Elmer model 240 CHN analyser.
The substrate $\mathbf{1 A c}\left(\mathrm{mp} 244-246^{\circ} \mathrm{C}, \mathrm{EtOH}\right)$ was prepared by the synthetic route which we have recently described ${ }^{5}$ and compounds $\mathbf{1 A} \mathbf{a}$ and $\mathbf{1 A} \mathbf{b}$ were similarly prepared from the reaction of $2,2^{\prime}$-diphenyldialdehyde with the appropriate arylhydrazine. For the substrates $1 \mathrm{Ad}\left(\mathrm{mp} 199-200^{\circ} \mathrm{C}\right.$, THF) and 1 Ae (mp $232-233^{\circ} \mathrm{C}, \mathrm{EtOH}$), a modification was necessary. In the
\dagger Atomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic D ata Centre (CCDC). See Instructions for Authors, J. Chem. Soc., Perkin Trans. 1, 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 207/ 79.

Table 1 Characterisation of products

Entry	Comp.	$\mathrm{Mp} /{ }^{\circ} \mathrm{C}$	Y ield (\%)	M icroanalysis found \% (required \%)		
				C	H	N
1	2Aa	259-260 ${ }^{\text {a }}$	76	61.3 (61.5)	3.6 (3.9)	10.4 (10.25)
2	2Ab	230-231 ${ }^{\text {a }}$	79	51.8 (51.6)	3.2 (3.1)	8.4 (8.6)
3	2Ac	243-245 ${ }^{\text {a }}$	93	56.5 (56.8)	3.6 (3.4)	9.7 (9.5)
4	2Ad	250-252 ${ }^{\text {a }}$	82	60.5 (60.05)	3.8 (4.1)	9.7 (9.55)
5	2Ae	251-253 ${ }^{\text {a }}$	95	62.6 (62.35)	4.9 (4.65)	10.0 (9.9)
6	2B	212-214 ${ }^{\text {a }}$	90	54.05 (53.8)	3.5 (3.3)	8.6 (8.4)
7	4Aa	140-141 ${ }^{\text {b }}$	92	81.7 (81.55)	4.9 (4.85)	13.4 (13.6)
8	4A b	180-181 ${ }^{\text {c }}$	93	64.8 (64.95)	3.6 (3.6)	10.6 (10.8)
9	4Ac	156-158 ${ }^{\text {b }}$	72	73.7 (73.4)	3.9 (4.05)	12.4 (12.2)
10	4Ad	126-128 ${ }^{\text {d }}$	88	78.0 (77.9)	4.75 (5.05)	12.6 (12.4)
11	4Ae	182-184 ${ }^{\text {d }}$	87	82.0 (81.7)	5.0 (5.3)	12.8 (13.0)
12	4B	250-252 ${ }^{\text {e }}$	53	76.75 (76.9)	4.4 (4.25)	11.8 (11.95)
13	5a	213-215 ${ }^{\text {f }}$	78	74.2 (74.4)	4.2 (4.4)	15.0 (15.3)
14	5b	192-193 ${ }^{\text {f }}$	72	65.2 (65.4)	3.0 (3.35)	13.2 (13.5)
15	5c	185-187 ${ }^{\text {f }}$	77	69.8 (70.0)	3.9 (3.95)	14.0 (14.4)
16	5d	205-206 ${ }^{\text {f }}$	75	72.8 (72.85)	4.3 (4.5)	14.4 (14.5)
17	5e	212-214 ${ }^{\text {f }}$	82	74.0 (74.2)	4.5 (4.75)	15.4 (15.25)
18	6	328-330 ${ }^{\text {g }}$	85	70.8 (71.0)	3.9 (4.0)	14.65 (14.8)

${ }^{\text {a }}$ From acetone-diethyl ether. ${ }^{\mathrm{b}}$ From EtOH. ${ }^{\mathrm{c}}$ From toluene. ${ }^{\text {d }}$ From MeOH . ${ }^{\mathbf{e}}$ With dimethylformamide as solvent and KOBu , demethylation to $\mathbf{1 B}$ (19\%) competed with ring expansion. ${ }^{\mathrm{f}} \mathrm{F}$ rom dichloromethane-light petroleum (bp $40-60^{\circ} \mathrm{C}$). ${ }^{9} \mathrm{From} \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 1 Reagents: i, NaOEt ; ii, $\mathrm{p}-\mathrm{N}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\overline{\mathrm{N}}-\mathrm{N}^{\dagger} \equiv \mathrm{C}-\mathrm{Ph}$. Some key ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} N \mathrm{~N}$ R shifts shown for $\mathrm{Y}=\mathrm{H}$ and for the 4 A series.
reaction of $2,2^{\prime}$-diphenyldialdehyde \ddagger with the para-electrondonating arylhydrazines the hydrazine was added to the aldehyde solution and the bishydrazone generated underwent in situ
† IU PAC name: biphenyl-2,2'-dicarbaldehyde.
air oxidation to the 9,10-bis(arylazo)-9,10-dihydrophenanthrene thus removing one step from the synthetic sequence ${ }^{5}$ The substrate 1 B ($\mathrm{mp} 183-184^{\circ} \mathrm{C}$, EtOH , 65%) was obtained by deoxygenation of its N -oxide (mp $230^{\circ} \mathrm{C}$, lit., ${ }^{8} 233^{\circ} \mathrm{C}, \mathrm{CHCl}_{3}$) by heating it under reflux in triethyl phosphite (3.9 mmol in $19 \mathrm{~cm}^{3}$) for 24 h under an atmosphere of nitrogen followed by

Fig. $1 \quad X$-Ray crystal structure of 5a
addition of the hot solution to a mixture of conc. $\mathrm{HCl}\left(5 \mathrm{~cm}^{3}\right)$ in water ($150 \mathrm{~cm}^{3}$). The following are typical examples of the reactions in Table 1.

1-M ethyl-2-phenyl-2H -phenanthro[9,10-d\}-1,2,3-triazolium perchlorate 2A a

A solution of the triazole 1Aa ($0.5 \mathrm{~g}, 1.69 \mathrm{mmol}$) in dimethyl sulfate ($5 \mathrm{~cm}^{3}$) was stirred at $120^{\circ} \mathrm{C}$ for 10 h . The mixture was then cooled and treated with an aqueous solution ($2 \mathrm{~cm}^{3}$) of sodium perchlorate ($2.07 \mathrm{~g}, 16.9 \mathrm{mmol}$) with rapid stirring. Addition of diethyl ether caused precipitation of compound 2A a ($0.52 \mathrm{~g}, 76 \%$), mp 259-260 ${ }^{\circ} \mathrm{C}$ (from acetone-diethyl ether); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1094\left(\mathrm{ClO}_{4}^{-}\right) ; \delta_{\mathrm{H}}\left(\left[^{2} \mathrm{H}_{6}\right] \mathrm{DM} \mathrm{SO}, 80^{\circ} \mathrm{C}\right) 4.83$ (3 H, s, N-M e), 8.01-8.22 (9 H, m, Ph, H-2', H-3', H-4', H-5, H-6, H-9, H-10), 8.74 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-8$), 8.92 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-7$), 9.07 (1 $\mathrm{H}, \mathrm{d}, \mathrm{H}-11), 9.19(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-4)$; $\delta_{\mathrm{c}}\left(80^{\circ} \mathrm{C}\right) 40.7(\mathrm{~N}-\mathrm{M} \mathrm{e}), 117.1$ and 120.6 (C-7a and C-7b), 122.8 (C-11a), 127.3 (C-2'), 129.5 (C-4'), 130.0 (C-3b), 130.3 (C-3'), 132.5 (C-11b), 140.0 ($C-1^{\prime}$), 141.4 (C-3a), remaining aromatic: 124.5, 125.3, 129.0, 130.5, 132.0 and 133.1 (two signals overlapped).

2-P henyl-2,3-dihydrophenanthro [9,10-e]-1,2,4-triazine 4A a

A suspension of salt $2 \mathrm{Aa}(0.5 \mathrm{~g}, 1.22 \mathrm{mmol})$ in toluene ($10 \mathrm{~cm}^{3}$) was treated with an excess of sodium ethoxide ($0.09 \mathrm{~g}, 1.34$ mmol). The resulting red solution was stirred at room temperature for 2 h . Evaporation of solvent under reduced pressure yielded the red product $4 \mathrm{Aa}(0.35 \mathrm{~g}, 92 \%)$, mp $140-141^{\circ} \mathrm{C}$ (from ethanol); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}\right) 7.15\left(1 \mathrm{H}, \mathrm{t}, \mathrm{N}-\mathrm{Ph}, \mathrm{H}-4^{\prime}\right), 5.52$ ($2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}$), $7.40-7.59$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{Ph}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-6$, H-7, H-10, H-11), 8.08-8.15 (3 H, m, H-5, H-8, H-9), 8.46 (1 $\mathrm{H}, \mathrm{d}, \mathrm{H}-12) ; \delta_{\mathrm{c}}\left(60^{\circ} \mathrm{C}\right) 62.7\left(3-\mathrm{CH}_{2}\right), 117.7,123.6,128.7$ and 144.3 ($\mathrm{N}-\mathrm{Ph}, \mathrm{C}-2^{\prime}, \mathrm{C}-4^{\prime}, \mathrm{C}-3^{\prime}$ and $\mathrm{C}-1^{\prime}$), 123.7 (C-9), 123.9 (C-8), 124.2 (C-10), 125.7 (C-7), 128.3 (C-6), 129.6 (C-12), 130.0 and 130.5 ($\mathrm{C}-8 \mathrm{a}$ and $\mathrm{C}-8 \mathrm{~b}$), 131.2 (C-12a), 131.7 (C-5), 134.1 (C-4b), 137.3 (C-12b), 152.2 (C-4a) (one signal overlapped).

7,10-D iphenyl-5-(4'-nitrophenyl)-9,10-dihydro-5H -phenanthro-[9,10-e][1,2,4]triazolo[4,3-d][1,2,4]triazine 5a

A solution of $4 \mathrm{Aa}(0.12 \mathrm{~g}, 0.39 \mathrm{mmol})$ and N -(p-nitrophenyl)benzohydrazonoyl bromide ${ }^{9}$ ($0.15 \mathrm{~g}, 0.47 \mathrm{mmol}$) in dry benzene $\left(15 \mathrm{~cm}^{3}\right)$ was treated dropwise with $\mathrm{Et}_{3} \mathrm{~N}\left(0.11 \mathrm{~cm}^{3}\right.$, 0.78 mmol) in dry benzene ($5 \mathrm{~cm}^{3}$) and the mixture stirred at ambient temperature for 24 h , filtered, the solvent removed under reduced pressure and the residue in dichloromethane placed on a silica gel column ($70-230$ mesh A STM) and eluted with gradient mixtures of light petroleum (bp $40-60^{\circ} \mathrm{C}$)dichloromethane ($30: 70 \mathrm{v} / \mathrm{v}$) to pure dichloromethane yielding $5 \mathrm{a}, \mathrm{mp} 213-215^{\circ} \mathrm{C}$ (dichloromethane-light petroleum bp 40$\left.60^{\circ} \mathrm{C}\right)$, in the later fractions ($0.17 \mathrm{~g}, 78 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.17,5.35$ ($2 \mathrm{H}, \mathrm{AB}$ doublets, J $12.5,9-\mathrm{CH}_{2}$), $7.06(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.2-8.0$ ($18 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $8.12\left(2 \mathrm{H}, \mathrm{d}, 5-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-\mathrm{p}, \mathrm{H}_{\text {meta }}\right.$); $\delta_{\mathrm{c}} 62.7(\mathrm{C}-9)$,
79.4 (C-4b), 150.25, 116.8, $142.8\left(5-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N} \mathrm{O}_{2}-\mathrm{p}, \mathrm{C}-1^{\prime}, \mathrm{C}-2^{\prime}, \mathrm{C}-\right.$ 4'), 143.5 (10-Ph, C-1'), 145.8 (C-11a), 153.9 (C-7), 135.5 (7-Ph, (-1'), 121.1, 123.3, 123.5, 123.7, 124.6, 126.9, 127.2, 127.9, 129.0, 129.3, 129.5, 130.05, 130.6, 131.1, 132.5 (remaining Ar); four Ar signals overlapped; for the X-ray structure, see Fig. 1.

1-M ethylphenanthro[9,10-c][1,2,5]ox adiazolium perchlorate 2B A solution of $1 \mathbf{B}$ ($2 \mathrm{~g}, 9.09 \mathrm{mmol}$) in dimethyl sulfate ($10 \mathrm{~cm}^{3}$) was stirred at $130^{\circ} \mathrm{C}$ for 48 h , cooled and treated with aqueous sodium perchlorate ($1.34 \mathrm{~g}, 2 \mathrm{~cm}^{3}$) with vigorous stirring. A ddition of diethyl ether caused precipitation of compound 2B ($2.74 \mathrm{~g}, 90 \%$), mp $212-214^{\circ} \mathrm{C}$ (acetone- $\mathrm{Et}_{2} \mathrm{O}$); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ $1089.8\left(\mathrm{ClO}_{4}^{-}\right)$) $\delta_{\mathrm{H}}\left(\left[^{2} \mathrm{H}_{6}\right] \mathrm{D}\right.$ M SO) $5.28(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{M} \mathrm{e}), 8.06-8.93$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$); insolubility prevented measurement of a carbon13 spectrum.

3H -P henanthro $[9,10-\mathrm{c}][1,2,5]$ oxadiazine 4B

A solution of compound 2B ($1 \mathrm{~g}, 2.98 \mathrm{mmol}$) in dry dimethylformamide ($25 \mathrm{~cm}^{3}$) was treated with KOBut $(0.4 \mathrm{~g}, 3.58 \mathrm{mmol})$, stirred at ambient temperature for 24 h , filtered to remove salts and evaporated under reduced pressure. The residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(4 \mathrm{~cm}^{3}\right)$ was placed on a silica gel column ($70-230$ mesh A STM) and eluted with gradient mixtures of light petroleum (bp 40$60^{\circ} \mathrm{C}$)-dichloromethane ($30: 70 \mathrm{v} / \mathrm{v}$ to $0: 1$). Compound $1 \mathbf{B}$ (19\%) was eluted first from the column followed by 4B , mp 250$252^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-light petroleum bp $\left.40-60^{\circ} \mathrm{C}\right)(0.37 \mathrm{~g}, 53 \%)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.5\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 7.39-7.61(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-7$, H-10, H-11), 8.02-8.8 (3 H, m, H-8, H-9, H-5), 8.36 ($1 \mathrm{H}, \mathrm{d}$, J 7.3, H-12); $\delta_{\mathrm{c}} 78.9$ (C-3), 150.5 (C-4a), 149.9 (C-12b), 132.7, 131.5 (C-12, C-5), 133.6, 132.4 (C-12a, C-4b), 129.6, 128.7 (C-8a, C-8b), 123.7, 124.8, 125.8, 128.8 (Ar, CH), two signals overlapped.

11-(4'-N itrophenyl)-9-phenyl-7H ,11H -phenanthro[9,10-c]-[1,2,4]triazolo[4,3-d][1,2,5]oxadiazine 6

A solution of 4 B ($0.07 \mathrm{~g}, 0.3 \mathrm{mmol}$) and N -(p-nitrophenyl)benzohydrazonoyl bromide ${ }^{9}(0.12 \mathrm{~g}, 0.36 \mathrm{mmol})$ in dry benzene $\left(15 \mathrm{~cm}^{3}\right)$ was treated dropwise with a solution of $\mathrm{Et}_{3} \mathrm{~N}(0.084$ $\left.\mathrm{cm}^{3}, 0.6 \mathrm{mmol}\right)$ in dry benzene ($5 \mathrm{~cm}^{3}$) and the mixture stirred at ambient temperature for 24 h , filtered to remove salts and evaporated under reduced pressure. The residue in dichloromethane $\left(4 \mathrm{~cm}^{3}\right)$ was placed on a silica gel column ($70-230$ mesh A STM) and eluted with gradient mixtures of light petroleum (bp 40$60^{\circ} \mathrm{C}$)-dichloromethane ($30: 70 \mathrm{v} / \mathrm{v}$ to $0: 1$) yielding bright yellow 6 , $\mathrm{mp} 328-330^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ in the later fractions (0.12 g , $85 \%) ; \delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 4.03,4.94(2 \mathrm{H}$, an AB pair of doublets, J 11 , 7-CH $)_{2}$, $6.65\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8,1-\mathrm{p}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{H}_{0}\right), 6.85-7.6(13 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.7(1 \mathrm{H}, \mathrm{d})$ and $7.90(1 \mathrm{H}, \mathrm{d})(\mathrm{H}-4, \mathrm{H}-12) ; \delta_{\mathrm{c}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 77.0$ (C-7), 78.1 (C-11a), 150.4, 122.1, 143.6 ($11-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N} \mathrm{O}_{2}-\mathrm{p}, \mathrm{C}-1^{\prime}$, C-2', C-4'), 157.9 (C-4b), 153.9 (C-9), 135.2 (9-Ph, C-1') 133.6, 133.0 (C-4a, C-11b), 132.3, 131.5, 131.1, 129.8, 128.7, 128.3, 127.8, 127.5, 127.1, 125.5, 125.4, 124.3, 123.9 (remaining Ar), one Ar signal overlapped.

X-R ay crystal structure determination of compound 5a

The structure was solved by direct methods, SH ELX -86 ${ }^{10}$ and refined by full matrix least squares usingSH E LX L-93. ${ }^{11}$ SH ELX operationswererendered paperlessusingORTEX which wasalso used to obtain the drawings. ${ }^{12} \mathrm{D}$ ata were corrected for L orentz and polarisation effects but not for absorption. Hydrogen atoms were included in calculated position with thermal parameters 30% larger than the atom to which they were attached. The nonhydrogen atoms were refined anisotropically. There was one water of crystallisation disordered over two positions $1 \AA$ apart. This water did not make H -bond contacts to any other atoms. The relatively high residual peak in the final difference map of $1.5 \mathrm{e}^{\AA^{-3}}$ was close to this water molecule. This residual peak and the unexpectedly high R index are both associated with problems involved in modelling the disordered solvent. A ll calculations were performed on a Silicon Graphics R 4000 computer.

References

1 T. D. Lash, B. H. N ovak and Y. Lin, Tetrahedron Lett., 1993, 35, 2493.

2 D. N. Nicolaides, E. A . Varella and R. W. Award, Tetrahedron, 1993, 49, 7779.
3 P. Cohen-F ernandes and C. L. H abriken, J. H eterocycl. C hem., 1987, 24, 1653.
4 G. Y asuda and T. H ori, N ippon K agaku K aishi, 1988, 1912 (C hem. A bstr., 1989, 111, 23 442v); G. Y asuda and T. H ori, N ippon K agaku K aishi, 1991, 240 (C hem. A bstr., 1991, 114, 228 840g).
5 R. N. Butler, F. A . Lysaght, P. D. M cD onald, C. S. Pyne, P. M cA rdle and D. Cunningham, J. Chem. Soc., Perkin Trans. 1, 1996, 1623.
6 K. N. Houk and K. Yamaguchi, in 1,3-Dipolar Cycloaddition C hemistry, ed. A. Padwa, Wiley, New York, 1984, vol. 2, pp. 441443.

7 R. Huisgen, in 1,3-Dipolar Cycloaddition Chemistry, ed. A. Padwa, Wiley, N ew York, 1984, vol. 1, pp. 137-139.
8 H. K ropf and R. Lambeck, A nnalen, 1966, 700, 18; J. Schmidt and J. Soll, Ber., 1907, 40, 2455.

9 J. B. Aylward and F. L. Scott, J. Chem. Soc. C, 1970, 968; J. B. Aylward and F. L. Scott, J. Chem. Soc. B, 1969, 1080.

10 G. M . Sheldrick, A cta C rystallogr., Sect. A, 1990, 46, 467.
11 G. M. Sheldrick, SHELXL-93 a computer program for crystal structure determination, U niversity of Göttingen, 1993.
12 P. M CA rdle, J. A ppl. C rystallogr., 1995, 28, 65.

Paper 6/05770E
R eceived 19th A ugust 1996 A ccepted 15th O ctober 1996

